Topics to review

- Commutative, associative, distributive, and identity property
(1)

Problem 1
Which expression is the same as the expression shown?
(1) $\mathrm{a} \times \mathrm{b}=$?
(A) $b+a$
(B) $b \times a$
(C) a
(D) none of the above
(2) $\mathrm{a} \times \mathrm{b}+\mathrm{a} \times \mathrm{c}=$? $a(b+c)$
(A) $a+b \times c$
(B) $a(b+c)$
(C) $(a+b)(a+c)$
(D) $a \times b+c$
(3) $a+(b+c)=?(a+b)+c$
(C) $(\mathrm{a}+\mathrm{b})(\mathrm{a}+\mathrm{c})$
(D) $(a+b)+c$

- Addition
$a \times b \rightarrow$ multiplication
$a \cdot b$
$a(b)$

$$
\begin{aligned}
& a \times b=4 \times 3=12 \\
& b \times a=3 \times 4=12
\end{aligned}
$$

Check: $a=4, b=3$

$$
a+b=b+a
$$

$$
a \times b=a, b=1
$$

$$
a \times b=a, b=0, a=0
$$

$$
a \times b=b+a, a=2=b
$$

$$
2 \times 2=2+2=4
$$

$$
\begin{aligned}
=(b+c)+a=(a+c)+b & =a+b+c \\
& =b+c+a
\end{aligned}
$$

(4) $a(b+c)=? a \cdot b+\boldsymbol{a} \cdot \mathbf{c}$
(A) $a \times b+a \times c$
(B) $a(b+c)$
(C) $(a+b)(a+c)$
(D) $(a+b)+c$
(2)

$$
\begin{aligned}
& a x b+a \times c \\
& a \cdot b+a \cdot c \\
& 4 \cdot 3+4 \cdot 5 \\
& 12+20=32 \\
& (a \times b)+(a \times c)
\end{aligned}
$$

$$
\begin{aligned}
& a(b+c) \\
& a=4, b=3, c=5
\end{aligned}
$$

PEMDAS

$$
\begin{aligned}
& a(b+c) \\
& 4(3+5)
\end{aligned}
$$

$$
4(8)
$$

- multiplication

$$
32
$$

$$
\begin{aligned}
a \cdot b+a \cdot c=a \cdot c+a \cdot b= & a \cdot a+b \cdot a=b \cdot a+c \cdot a=a \cdot b+a \cdot c \\
& a \cdot c+4 \cdot 3=-2 a+b+a= \\
& 15+12 \\
& 32+4+5 \\
& 6+4+5=15
\end{aligned}
$$

$\not x<b+\not x a c$
$a(b+c)$

- Find whats in common abD
- Factor out the common term

$$
a(b-c)=a \cdot b-a \cdot c \neq a \cdot c-a \cdot b
$$

Problem 2
What number goes in the box to make the equation true？

$$
x=,=x
$$

（A） 4
（B） 16
（C） 8
（D） 13

$$
\begin{array}{ll}
35-\square=9 \times 3 & 35-x=27 \\
35-27=27 \\
35 \times 3 & 35-x-27=0 \\
+x+x \\
C_{35-x}=27 & 35-27=x
\end{array}
$$

Topics to review：
－Multiplying fractions with whole numbers（only need to watch until 4：15）
Problem 3
Two－thirds of the chairs were donated．How many chairs were donated？

$$
\frac{1}{3}=33 \%
$$

（A） 10 chairs
hカカカh
（B） 5 chairs
（C） 12 chairs
（D） 9 chairs
hrh h h hi these are chairs

Topics to review：
－Finding patterns in numbers
Problem 4 $\frac{3}{5}$ of the chairs

$$
\frac{3}{5} \cdot 15=\frac{45}{5}=9
$$

Look at the number pattern：

$$
\frac{3}{1}, \frac{7}{2}, \frac{15}{3}, \frac{31}{4}, \frac{63}{5}, \ldots---\frac{1023}{9}
$$

What is the rule for the pattern？
（A）Multiply by 3 and then subtract 2 to get the next number in the pattern．
（B） 4 to get the next number in the pattern．
（C）Multiply by 2 and then add 1 to get the next number in the pattern．
（D）Add 5 and then subtract 1 to get the next number in the pattern．

$$
a_{1} \cdot 2+1=2 a_{1}+1
$$

Problem 5
The formula $2 \mathrm{x}+7 \mathrm{y}$ shows the cost of x packs of index cards and y packs of printer paper at Ollie's Office Supply. Alexandra needs to buy 6 packs of index cards and 4 packs of printer paper for her class. What is the total cost? $\quad 2 x+7 y \quad x$:index, y :paper
mull.
notation
$x \times y x \times 2$ $x \cdot y \quad x \cdot 2$
$x(y) x(2)$ $x y \times 2$ $y=2$

Topics to review:

- Slope-intercept equation from two points
- Worked example: slope from two points
- How to determine if a point lies on a line or not using the point and the equation

$$
\begin{aligned}
& \frac{12-16}{6-12}=\frac{y_{1}-y_{2}}{x_{1}-x_{2}} \quad \frac{4}{6}=\frac{2}{3} \text { (rise) y (in) x } \\
& =\frac{-4}{-6}=\frac{-1 \cdot 4}{-1 \cdot 6}=\frac{-1}{-1} \cdot \frac{4}{6}=\frac{4}{6}=\frac{2}{3} \\
& \frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{16-12}{12-6}=\frac{4}{6} \\
& \frac{y_{2}-y_{1}}{X_{2}-x_{1}}=\frac{12-8}{6-0}=\frac{4}{6}=\frac{2}{3} \\
& (0,8)\left(x_{1}, y_{1}\right) \quad \text { slope }: \frac{y_{2}-y_{1}}{x_{2}-x_{1}}=m \\
& (6,12)\left(x_{2}, y_{2}\right) \quad
\end{aligned}
$$

Equation of a live

$$
\begin{aligned}
y=m x+b \quad \frac{2}{3} & =m: \text { sicpe } \\
8 & =b: y \text {-intercept }
\end{aligned}
$$

$$
\begin{array}{ll}
y=\frac{2}{3} x+8 \\
18=\frac{2}{3}(15)+8
\end{array} \quad \text { Building cur line! } \quad\left(\begin{array}{l}
15,18) \\
(x, y)
\end{array}\right.
$$

$$
18=10+8=18 \quad \frac{2}{3} \cdot \frac{15}{1}=\frac{30}{3}=10
$$

$$
\begin{aligned}
& y=\frac{2}{3} x+8 \quad(10, y) \rightarrow(10,14.6) \\
& y=\frac{2}{3}(10)+8=14.6
\end{aligned}
$$

