Topics to review

• Commutative, associative, distributive, and identity property

$$\begin{array}{l} (2) \quad (a \times b + a \times c) \\ a \cdot b + a \cdot c \\ a \cdot 3 + 4 \cdot 5 \\ a \cdot 3 + 4 \cdot 5 \\ a \cdot 2 + 20 = 32 \end{array} \qquad \begin{array}{l} A(b+c) \\ a \cdot b + a \cdot c \\ (a \times b) + (a \times c) \\ a \cdot b + a \cdot c \end{array} \qquad \begin{array}{l} A(b+c) \\ a \cdot b + a \cdot c \\ a \cdot b + a \cdot c \end{array} \qquad \begin{array}{l} A(b+c) \\ a \cdot b + a \cdot c \end{array} \qquad \begin{array}{l} A(b+c) \\ a \cdot b + a \cdot c \end{array} \qquad \begin{array}{l} A(b+c) \\ a \cdot b + a \cdot c \end{array} \qquad \begin{array}{l} A(b+c) \\ a \cdot b + a \cdot c \end{array} \qquad \begin{array}{l} A(b+c) \\ a \cdot b + a \cdot c \end{array} \qquad \begin{array}{l} A(b+c) \\ a \cdot b + a \cdot c \end{array} \qquad \begin{array}{l} A(b+c) \\ a \cdot b + a \cdot c \end{array} \qquad \begin{array}{l} A(b+c) \\ a \cdot b + a \cdot c \end{array} \qquad \begin{array}{l} A(b+c) \\ a \cdot b + a \cdot c \end{array} \qquad \begin{array}{l} A(b+c) \\ a \cdot b + a \cdot c \end{array} \qquad \begin{array}{l} A(b+c) \\ a \cdot b + a \cdot c \end{array} \qquad \begin{array}{l} A(b+c) \\ a \cdot b + a \cdot c \end{array} \qquad \begin{array}{l} A(b+c) \\ a \cdot b + a \cdot c \end{array} \qquad \begin{array}{l} A(b+c) \\ a \cdot b + a \cdot c \end{array} \qquad \begin{array}{l} A(b+c) \\ a \cdot b + a \cdot c \end{array} \qquad \begin{array}{l} A(b+c) \\ a \cdot b + a \cdot c \end{array} \qquad \begin{array}{l} A(b+c) \\ a \cdot b + a \cdot c \end{array} \qquad \begin{array}{l} A(b+c) \\ a \cdot b + a \cdot c \end{array} \qquad \begin{array}{l} A(b+c) \\ a \cdot b + a \cdot c \end{array} \qquad \begin{array}{l} A(b+c) \\ a \cdot b + a \cdot c \end{array} \qquad \begin{array}{l} A(b+c) \\ a \cdot b + a \cdot c \end{array} \qquad \begin{array}{l} A(b+c) \\ a \cdot b + a \cdot c \end{array} \qquad \begin{array}{l} A(b+c) \\ a \cdot b + a \cdot c \end{array} \qquad \begin{array}{l} A(b+c) \\ a \cdot b + a \cdot c \end{array} \qquad \begin{array}{l} A(b+c) \\ a \cdot b + a \cdot c \end{array} \qquad \begin{array}{l} A(b+c) \\ a \cdot b + a \cdot c \end{array} \qquad \begin{array}{l} A(b+c) \\ a \cdot b + a \cdot c \end{array} \qquad \begin{array}{l} A(b+c) \\ a \cdot b + a \cdot c \end{array} \qquad \begin{array}{l} A(b+c) \\ a \cdot b + a \cdot c \end{array} \qquad \begin{array}{l} A(b+c) \\ a \cdot b + a \cdot c \end{array} \qquad \begin{array}{l} A(b+c) \\ a \cdot b + a \cdot c \end{array} \qquad \begin{array}{l} A(b+c) \\ a \cdot b + a \cdot c \end{array} \qquad \begin{array}{l} A(b+c) \\ a \cdot b + a \cdot c \end{array} \qquad \begin{array}{l} A(b+c) \\ a \cdot b + a \cdot c \end{array} \qquad \begin{array}{l} A(b+c) \\ a \cdot b + a \cdot c \end{array} \qquad \begin{array}{l} A(b+c) \\ a \cdot b + a \cdot c \end{array} \qquad \begin{array}{l} A(b+c) \\ a \cdot b + a \cdot c \end{array} \qquad \begin{array}{l} A(b+c) \\ A(b+c) \end{array} \qquad \begin{array}{l} A(b+c) \end{array}$$

Week 6

Problem 2		V = X
What number goes in	the box to make the equation	true? ^ - , - ,
(A) 4	$2 \subset \Box \subset A \vee 2$	35-X=27
(B) 16	22 - L - 1x 5	-27 -27
(C) 8	$35 - X = 9 \times 3$	35-x-27 = O
(D) 13	2 = y = 21	+X +X
	C35-X-27	35-27 = X
Topics to review:	35-27=8=X	8 = X

• Multiplying fractions with whole numbers (only need to watch until 4:15)

 $a_1 \cdot 2 + 1 = 2a_1 + 1$

2

Problem 5		
The formula $2x + 7y$ shows the cost of x packs of index cards and y packs		
of printer paper at Ollie's Office Supply. Alexandra needs to buy 6 packs		
of index cards and 4 packs of printer paper for her class. W	hat is the	
total cost? 2x+7y X: index N: paper 2	X × Y X×2	
	\''} X'\ X'L	
(A) \$43 b 4 2(x	$(x) + 7(y) = x(y) x/2^{2}$	
(B) \$19 × Y		
(C) \$50 $2/6$ + 7.4 =	^7 *2	
(D) \$40	y=2	
12 + 28 = 940		

Topics to review:

- Slope-intercept equation from two points
- Worked example: slope from two points
- How to determine if a point lies on a line or not using the point and the equation

$$\frac{12-16}{6-12} = \frac{y_{1}-y_{2}}{x_{1}-x_{2}} \qquad \frac{4}{6} = \frac{2}{3} (rise) y$$

$$= \frac{-4}{-6} = \frac{-1}{-1} \cdot \frac{4}{5} = \frac{4}{6} = \frac{2}{3}$$

$$\frac{y_{2}-y_{1}}{y_{2}-x_{1}} = \frac{16-12}{12-6} = \frac{4}{6}$$

$$\frac{y_{2}-y_{1}}{x_{2}-x_{1}} = \frac{12-8}{6-0} = \frac{4}{6} = \frac{2}{3}$$

$$(0,8) (x_{1},y_{1}) \qquad \text{Slope} : \frac{y_{2}-y_{1}}{x_{2}-x_{1}} = M$$

$$(6,12) (x_{2},y_{2}) \qquad \frac{2}{x_{2}-x_{1}} = M$$

$$\frac{y_{2}-y_{1}}{x_{2}-x_{1}} = \frac{2}{6} = \frac{2}{3}$$

$$\frac{y_{2}-y_{1}}{x_{2}-x_{1}} = \frac{12-8}{6} = \frac{4}{6} = \frac{2}{3}$$

$$(0,8) (x_{1},y_{1}) \qquad \text{Slope} : \frac{y_{2}-y_{1}}{x_{2}-x_{1}} = M$$

$$(6,12) (x_{2},y_{2}) \qquad \frac{2}{x_{2}-x_{1}} = M$$

$$\frac{y_{2}-y_{1}}{x_{2}-x_{1}} = \frac{y_{2}-y_{1}}{x_{2}-x_{1}} = \frac$$

$$Y = \frac{2}{3} \times + 8 \qquad (10, y) \rightarrow (10, 14.6)$$
$$(x, y)$$
$$Y = \frac{2}{3} (10) + 8 = 14.6$$